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Fluctuations in a Fluid Under a Stationary 
Heat Flux. III. Brillouin Lines 
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We present a general theory of the Brillouin lines in a fluid subject to a strong 
stationary heat flux. The combined effects of sound-absorbing walls and of large 
spatial inhomogeneities induced by the temperature gradient are computed for 
the first time. Nonequilibrium sound modes, constructed by WKB techniques, 
are used. No restrictions have to be made in the theory concerning the scatter- 
ing geometry and the thermal equations of state. 
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1. I N T R O D U C T I O N  

In previous work (l'-~ we derived from fluctuating hydrodynamics  a theory 
for the correlation functions of the hydrodynamic  variables in a fluid far 
from thermal equilibrium. In particular, we studied a fluid exposed to a 
stat ionary heat flux. We derived formal expansions of the correlation 
functions in terms of the nonequil ibrium hydrodynamic  modes, i.e., the 
eigenmodes of the hydrodynamic  opera tor  obtained by linearizing the 
hydrodynamic  equations a round  the nonequil ibrium stat ionary state. 

As an application, we computed  the central or Rayleigh line of the 
light-scattering spectrum for (incident) frequencies in both  the optical and 
microwave regimes. 13~ The Rayleigh line is generated by the viscoheat 
modes. These are slow modes evolving on a time scale slow compared  to 
processes associated with sound propagat ion.  
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In this paper, we continue our study of the light-scattering spectrum of 
nonequilibrium fluids with the Brillouin lines. They are caused by the so- 
called fast part of the density-density correlation function, i.e., the part that 
can be represented in terms of the sound modes. In this sense, the present 
paper is complementary to Ref. 3. However, we do not aim to present a 
description of the fast part of the complete correlation matrix, nor do we 
discuss the microwave regime here. Rather, we restrict ourselves to a 
general theory of the Brillouin lines in the optical regime. 

The early theories t4 9~ of the Brillouin lines for fluids exposed to a heat 
flux are only valid near equilibrium (i.e., to linear order in the temperature 
gradient) and in the limit of large systems. However, it was noticed 
soon ~1~ that finite-size effects may be important in the systems that have 
been studied experimentally3 ~2'13J In particular, Satten and Ronis (~~ 
proposed a linear theory incorporating boundary effects, which considered 
partially and totally sound absorbing walls in conjunction with fluctuations 
on the boundaries. They were able to explain the experiments of Beysens et 
al(12~ experiments qualitatively. Kirkpatrick et al.ll4) were the first to try a 
nonlinear theory by taking into account the spatial inhomogeneities 
induced by large temperature gradients. Explicit results for the Brillouin 
lines were obtained for special thermodynamic equations of state and scat- 
tering geometries. Although the nonlinear theory of Kirkpatrick et al. does 
not include boundary effects, their results are also consistent with the 
measured ~2~ asymmetry of the Brillouin lines. 

In this paper, the boundary effects and the spatial inhomogeneities are 
taken into account at the same time. Moreover, we do not have to make 
any assumptions concerning the equations of state or the scattering 
geometry. We thus present here for the first time a general, nonlinear 
theory of the Brillouin lines in a nonequilibrium fluid. 

In developing the theory, basically two technical problems arose: 
First, we had to compute explicitly the nonequilibrium sound modes. They 
are the natural entities to be used in a formal mode expansion of the 
correlation functions far from equilibrium. The construction of these modes 
by means of WKB techniques is by itself an elaborate task that will be dis- 
cussed in a separate publication, tlsl Therefore, here we will only state the 
results. The second problem was the summation of the expansions in terms 
of these nonequilibrium modes in closed form. This problem also can be 
treated, within consistent approximations, analytically. This somewhat 
delicate calculation will be presented in greater detail here. The final 
expression for the Brillouin lines appears in a form that is physically a very 
intuitive generalization of the earlier linear theories, which takes into 
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account both the partial or total sound absorption at the walls and the 
spatial inhomogeneities in the fluid. 

The plan of this paper is as follows: In Section 2, we sketch the 
derivation of a formal expansion of the Brillouin lines in terms of non- 
equilibrium sound modes, based on fluctuating hydrodynamics. In the non- 
equilibrium stationary state, one finds mode-coupling contributions by 
pairs of nonequilibrium sound modes that are responsible for the asym- 
metry of the Brillouin lines. Then, in Section 3, we summarize the results 
for the nonequilibrium sound modes, as obtained from our WKB 
calculation. ~Is) They involve space-dependent, complex wave vectors, which 
contain all the relevant information about the profiles of the hydrodynamic 
fields in the given stationary state. The nonequilibrium sound modes are 
used in Section 4 to evaluate the oscillator strengths occurring in the mode 
expansion of the Brillouin lines. In Section 5, finally, we are ready to 
present our general result for the Brillouin lines in a fluid subject to a 
stationary heat flux, and we also give a brief interpretation of the result in 
physical terms. In order not to interrupt the logical line in the derivation of 
our theory by lengthy calculations, we devote Appendices A E to technical 
details. 

In a separate paper,/Iv1 we give a more elaborate discussion of our 
theory, including a comparison with existing theories and experiments, and 
proposals for nex experiments. 

2. M O D E  E X P A N S I O N  OF T H E  B R I L L O U I N  L INES  

We consider a simple fluid in a gravity field g = - g e _  confined 
between two horizontal (infinite) plates located at z =  -d/2  and z = d/2, 
which have uniform temperatures Tl and T2, respectively. Assuming that 
the fluid is in a nonconvective stationary state, the macroscopic flow 
velocity u vanishes, and the pressure and the temperature have one-dimen- 
sional profiles p(z) and T(z), which are the solution of the nonlinear 
equations 

alp+ g,(p, T)=0 
dz 

(2.1) 
d dT r) =0 

with boundary conditions T(--all2) = TI, T(d/2)= T2- In (2.1), p(p, T) and 
).(p, T) are the mass density and the thermal conductivity, respectively, 
expressed in terms of p and T via the local thermodynamic equations of 
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state. For the further development of the theory it is not necessary to know 
the solution p(z), T(z) explicitly. Thus, we assume they are given. 

In the actual fluid, there are always fluctuations around the stationary 
state. They give rise to light scattering. (~sl The quantity measured in a 
light-scattering experiment is the dynamic structure factor, which is 
basically the Fourier transform of the density-density correlation 
function. (~8t Denoting by 6p(r, t) the density fluctuation at point r and time 
t, and using the symmetry of the problem, the density-density correlation 
function is given by (1) 

Mpp(rlr , Zl, z2; t) = <6p(ri, tl) 6p(r2, h)}ss (2.2) 

where rll = (x~ - x 2 ,  Yl - -  Y 2 ) ,  r l l  = jrj,[, and t =  t~ - h ,  and the average is 
over the stationary state ensemble. Assuming that the scattering volume is 
centered at point R (away from the boundaries) and has linear dimensions 
of the order Ls, one has for the dynamic structure factor (2'~6'~81 

S(k, co; R:) 

1 II Rz+Lw/2 
= - '~sJJR_L,/2 d z  I dz2e -ik:(:l --2)FI ' k  z2;co)+c,c. (2.3) 

where c.c. denotes the complex conjugate, k H = (kx, k,.), and 

3]/pp(kll, z,, z2; co) 

fo f = dt dr H {expE-i(kll- rll - cot)] } Mpo(rll, 21, Z2; t) (2.4) 

In (2.3), we have further assumed that the scattering volume is uniformly 
illuminated during a time T, with kx, k,. >> L s- ' and co >> T~ 1. 

As shown in Ref. 1, one can derive a theory for the density density 
correlation function in the stationary state from fluctuating hydrodynamics. 
To this purpose, one must consider the full correlation matrix 

M(rt, tl ;%, t2)= <6a(rl, t l)6a(r2, h)>ss (2.5) 

where 6a=  (@, 6T, 6u) denotes the fluctuations of all the independent 
hydrodynamic fields, namely pressure, temperature, and flow velocity, 
respectively. From (2.5) one obtains in particular Mop(rll, z l ,  z2; t), since 
the fluctuations in density are related to those in pressure and temperature 
via the thermodynamic identity 5p = (7/c 2) @ - pc~ cST, where c is the speed 
of sound, ? = Cp/C~ is the ratio of the specific heat (per unit mass) at con- 
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stant pressure and constant volume, and ~ is the thermal expansion coef- 
ficient. 

For times t l > t 2  the correlation matrix obeys the evolution 
equation (1,19) 

- -  M(rl, t l ; r ,  t2) = - ~ ( z l ) ' M ( r l , t l ; r 2 ,  t2) (tl > t2) (2.6) 
Ot~ 

where the hydrodynamic operator .~(z)  is obtained by linearizing the 
hydrodynamic equations around the stationary state solution p(z) ,  T(z),  

u = 0 .  To solve Eq. (2.6), one needs as initial condition the equal-time 
correlation matrix M(rl, t2; r2, t2). This is given by (l'lg) 

M(rj ,  t2 ; r2, t2) = A(~  8(r,  - r2) + D(r~, r2) (2.7) 

where the first term on the right-hand side is the local equilibrium 
correlation matrix, (z16) while D(rl, r2) is a long-range nonequilibrium con- 
tribution that must be determined from the equation (1"~9) 

2/{~.(z, ) D),/~(rl, r2) + ~ ( z 2 )  D=~(rl, r2) = -C ,#( r l ,  r2) (2.8) 

Here C(rl, r2) is the so-called mode-coupling matrix to be given explicity in 
Eq. (2.10) below. 

In computing S(k, co; R~) according to Eqs. (2.3)-(2.8), one can make 
use of three small parameters that occur naturally in the problem as ratios 
of four characteristic lengths. These lengths are I2'16) 

1. The system size d. 

2. The macroscopic length Lv measuring the scale on which the 
macroscopic fields appearing in .3r vary. 

3. The wavelength k 1. 

4. The kinetic length Lm, i.e., the ratio of the generalized diffusion 
coefficients (kinematic viscosity, longitudinal viscosity, or thermal 
diffusivity) to the speed of sound. 

The three small parameters are 

el = L m k ,  e 2 = 1 /Lvk ,  e3 = 1/kd (2.9) 

They typically all lie between 10 - 4  and 10 3. In the following, we will 
denote by ~ any of the three small parameters. 
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Since e is so small, the dynamic structure factor need only be com- 
puted to leading order in e. For this purpose we have to take into account 
only the zeroth-order part of the mode-coupling matrix, i.e., 
C(rl, r2)= C(~ cS(r~- r2) with (1'2'a6) 

C <~ = kB dT/dz 0 [(c~T + 7 -=1 )/c~p] e 

c-e [ ( c~T+7-  1)/c~p] e: 0 

(2.~o) 

Although only the leading order of S(k, co; R:) is asked for, we must treat 
the operator ~ ( z ) ,  which governs the dynamics of the correlation matrix, 
up to first order in e, since the dynamic structure factor contains resonant 
peaks around the frequencies co~0 [Rayleigh line SH(k, co; R-)] and 
co~ +_ck [Brillouin lines SB+_(k, co;R:)].  These frequencies are propor- 
tional to the possible energy transfer between the fluid and the elec- 
tromagnetic field in the scattering process. (~8) 

In solving Eqs. (2.6) and (2.8) for the correlation matrix, we apply a 
spectral decomposition of ;~/g(z) in terms of its eigenmodes. Denoting by s 
the eigenvalues of ,~(z),  and by aR(r) and aL(r) the right and left eigenvec- 
tors, respectively, the eigenvalue equations are 

Jg(z) �9 aR(r) = saa(r) 

+ (z )"  aL(r )  = sa~(r) 
(2.11) 

where o~/g +(z) is the adjoint operator in the scalar product 
(al, a2)=~ dr a~(r)'a2(r). In diagonalizing ~ ( z ) ,  only the eigenvalues 
must be determined up to first order in e, because they govern the 
dynamics of the correlations near the resonances. For the eigenvectors, 
which determine the amplitudes of the correlations, the zeroth order is suf- 
ficient. 

Since we restrict ourselves to the Brillouin lines here, we have to con- 
sider only the sound modes, i.eo, the fast modes for which the eigenvalues 
are of the order Isl ~ ck. These are characterized by three indices (or, %n): 
~r = + or-dist inguishes the sound modes with eigenvalues having positive 
or negative imaginary parts, respectively, qll= (q~, q,.) is a continuous 
horizontal wave vector, and n is a discrete index associated with a discrete 
wavenumber qn~ for the vertical direction, in which the system is finite. 
Using a time-scale perturbation theory to separate the slow and fast 
variables in ~g(z), one finds for the sound eigenvectors/15) 
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aa,qlln(R r) = S~,q~,(z)[[ exp(iql I "rll ) (2.12a) 

/ 

a~_ ,,(r) = ,qr  

cpl/2p~,~,,,(z) 

7-1[p~,q,,,,(z)+(7~l) 1/2 
p ~/2qll 

ll~ {p~,q,,,,(z)c~cp 1/2 \7-1/(7~'/2 p-- -,/2[7(Y Vr - So,qH,,(z)l ) ] ~/2 S~.q,,~(z) ) 

qll 

exp( - iql / �9 rll ) 

(2.!2b) 

where the scalar functions p~,qll,,(z), S~,qrl,,(z), and ~b~,ul,n(z ) (depending on 
qll = [qlll only, due to rotat ional  invariance in the x, y plane) are the eigen- 
solutions of a one-dimensional,  3 x 3 eigenvalue problem to be giver~ 
explicitly in the next section. Physically, the three scalar functions corres- 
pond  to small deviations of the pressure, the ent ropy density, 3 and the 
potential of the longitudinal velocity, respectively, from the stat ionary state. 
In (2.12), we have not  explicitly indicated the dependence of the average 
quantities on z. 

Applying now (2.11) and (2.12) together with the or thogonal i ty  and 
completeness relations satisfied by the eigenvectors to Eqs. (2.6)-(2.8) and 
(2.10), one obtains a formal expansion of the fast part  of  the correlat ion 
matrix in terms of the sound modes. F r o m  this one finds the fast part  of the 
densi ty-densi ty correlat ion function, which has to be inserted into (2.3) 
and (2.4) to yield the mode expansion of  the Brillouin lines. In doing so, we 
will further assume that the linear dimension of the scattering volume L,  is 
intermediate between the wavelength k 1 and the macroscopic  lengths d 
and Lv.  In this case, the ratios LJLv, Ljd, and I/Lsk are all small, 

3 The entropy density has been identified in Refs. 1 and 2 to be a slow variable in the bulk 
fluid. Hence, it does not contribute to the sound modes there. In a finite system with given 
boundary conditions [cf. Eq. (3.2) below], however, the entropy density does not vanish for 
the sound modes, although it is nonzero only within hydrodynamic boundary layers with 
thickness of the order eJ/a/k. Similar boundary layer contributions arise in the velocity field. 
We prove in Appendix B that such boundary layer contributions are negligible for the 
Brillouin lines as long as the scattering volume is located away from the boundaries. 
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typically of the order ~ .  Neglecting such small corrections, the mode 
expansion of the Brillouin lines reads (2'~6) 

Su,~(k, (0; R:) = ku ~ B~(k;  R=) �9 I-c.c. ( o =  + )  (2.13) 
n Sa,klln - -  l(J) 

where the B,,o(k; R~) are oscillator strengths. Corresponding to the two 
terms on the rhs of Eq. (2.7), they can be decomposed into a local 
equilibrium and a mode-coupling part: 

B,,~(k; Re) LE . = B,~ (k, R~) + B~C(k; R:) (2.14) 

These are given by 

p ( R : )  T ( R : )  (27c)2/3,r,k,,,,(k:)/}~,k,,,,(_k:) (2.15) LE . 
B,,~ (k, R:) = c~(R:) 

and 

where 

BMC(k R : ) -  p(R~) (2n) 4/~a,k,~,,(kz ) 
. . . . .  c2(B:) 

Finally, 

17 . . . . .  ( kll) = - klT ~_a/2 po&,,,,(z ) 

( ~  1/2 I d a )  a,k,,m 
+ a T \ T _  1] S~,klln(z) dz 

&b~&~ [- 1/2 
,21 , 

are the matrix elements of the mode-coupling matrix. 
Notice that B~ tff is determined by the mode (o, kiln ) alone, while in 

B,~ c all modes ( - a ,  kum ) are coupled to (a, kiln ) via the mode-coupling 
matrix. 4 Equations (2.13)-(2.18) are the basis for our further calculations. 

4 In principal, other (slow) hydrodynamic modes couple to (a, kiln ) as well. The couplings 
kept in (2.16) are those for which the denominator becomes small when the leading con- 
tributions to the eigenvalues cancel. The error made in neglecting all the other mode 
couplings is of the order e. 

= + f,,s+ Lsj2 _ik,z 
e - po,k~t,,(z) (2.17) 

~Rz-  Ls/2 

x ~ Ho.,_,..(kH) /~o&,-, (2.16) 
rn Scr,kll n .off S a,kllm 
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3. N O N E Q U l L I B R I U M  S O U N D  M O D E S  

In order to proceed with the evaluation of the Brillouin lines, we need 
the eigenvalues S~,qH n and eigenfunctions Po,q,ln(z), S~,qHn(z), and ~,ql~,(z). 
They follow from the eigenvalue problem TM 

O ~ S ( z )  + O ~ p ( z )  = sS(z) 

[ ~ ( 7 _ l ) ] , / ; D ~ S ( ~ ) + ( ~ _ l ) D ~ p ( ~ ) _ ! c ~ ( z ) = s p ( z  ) (3.1) 
qll 

qll~cp(z) + Ft~2~b(z) = s~O(z) 

where ~ = q~-  d2/dz 2, and the boundary conditions are 

(+ 0 

(3.2) 

In (3.1), the entropy density S(z) is supposed to vanish away from the 
boundaries. Furthermore, D r=2/pCp is the thermal diffusivity and 
F/= (4q + ~)/p is the longitudinal viscosity, with t /and ~ denoting the shear 
and bulk viscosity, respectively. The z dependence of the average quantities 
has not been indicated explicitly in (3.1) and (3.2). The first two boundary 
conditions in (3.2) are the conditions of perfectly heat conducting and 
sticking plates. The last condition accounts for the sound absorption by the 
walls. Here fi~+~ and f l ( - ) a r e  the specific acoustic admittances (2~ of the 
plates at z = +d/2 and z = -oi/2, respectively. 5 These parameters describe 
the local distortions of the walls in response to pressure perturbations. (2~ 
In general, they are complex quantities with positive real parts. Special 
cases are /3=0 (total reflection) and /3= 1 (total absorption). The nor- 
malization of the eigenfunctions is/15) 

~ a/2 I 1 p2(z) + 7(z) S2(z) - - - -  
~-d/2 q~ 

j 1 
~(z) ~ ( z )  dz= (2~) 2 (3.3) 

-~ Since fl will in general be temperature dependent, we do not assume fl(+l = pc-). 
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Making use of the small parameters e, one can solve the eigenvalue 
problem (3.1)-(3.3) analytically. Details of the solution will be reported 
elsewhere. (~s) Just two technical points should be mentioned here. First, it 
is appropriate to use WKB techniques, since the wavelengths of the modes 
considered here are much smaller than the length on which the 
macroscopic fields vary [cf. e2 in (2.9)]. Second, one must apply a singular 
perturbation theory in order to take proper care of the hydrodynamic 
boundary layers close to the plates. We now summarize the results for the 
nonequilibrium sound modes, as they are relevant for the following, and 
discuss their physical properties. 

The WKB method shows that nonequilibrium sound does not 
propagate along straight lines, since the sound velocity c(z) is not constant. 
Instead, the sound rays are curves. A particular sound ray is uniquely 
determined by fixing a reference point R in the bulk fluid 6 through which it 
passes and a wave vector q(R)= (qll, q~(R)) in that point. In fact, given 
(R, q(R)) as "initial conditions," the whole ray can be constructed via the 
tangent vectors ~(z; R, q(R)), which are the unit vectors corresponding to 
the local wave vectors 

q(z; R, q(R)) = (qEI, q:(z; R, q(R)) (3.4) 

where 

qz(z; R, q(R)) = q~(R) ~ [1 2 (3.5) -~ c2(Rz) qz(R)J 

In this paper, we assume that the sound rays causing the light scattering 
are monotonically bent between the plates confining the fluid, i.e., we 
assume that qz(z; R, q(R)) is nonzero for all z. The case that the sound 
rays are totally bent will be discussed in another paper. (17) Moreover, 
we will keep the reference point fixed and suppress the dependence on 
R, thus writing simply q(z ;R,q(R))=q(z ,q(R)) .  By construction, 
q(R__, q(R))=q(R),  and the unit vector ~(z, q(R)) defines the local direc- 
tion of the ray in z. Equations (3.4) and (3.5) are equivalent to 

c(z ) q(z, q(R)) = c( Rz) q(R) (3.6) 

which is just Snell's law in a stratified medium. (21) 
For each qll there is only a discrete set of positive 7 values for q,(R) 

that allow the boundary conditions to be satisfied at z =  +_d/2. We will 

6 We will later choose R to be center of the scattering volume. 
7 For a complete system of eigenvectors, only modes with q.(R)> 0 are needed. 115) 
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denote these characteristic values by q,~, where n is a positive integer) 
Putting q, = (qll, q,~), the q,~ are given by (15) 

fd/2 q=(z, %) dz =nrc (3.7) 
-d/2 

Only the special rays (R, %) with qn satisfying (3.7) are suitable for eigen- 
modes. 

To define the eigenvalues and eigenfunctions, we need next the effec- 
tive sound velocity c(R, q,) and the effective sound damping coefficient 
F,(R, %) associated with the ray (R, %). These quantities are defined by 

and 

1 d ~,u/2 1 dz 
(3.8) 

c(R, q.) q.: - ~-"/2 c(z) c~:(z, q,,) 

Fs(R, q~) q] d Ca/2 F~(z) q2(z, %) dz 
(3.9) J 2c(R, %) ~,: -a/2 2c(z) 0:(z, q~) 

where F s= F~+ ( 7 - 1 ) D r  is the local sound damping coefficient. The 
right-hand side of Eq. (3.8) is the time it takes the ray (R, qn) to pass from 
plate to plate, while the right-hand side of (3.9) is the total attenuation the 
ray experiences on that way through the fluid. Thus, c(R, q,,) and F,(R, %) 
are averages taken over the ray (R, %). 

Besides the bulk damping, the ray suffers an additional damping 
caused by the sound absorption of the walls. This depends on the acoustic 
admittances /~(+1 and /~(-~ of the plates and on the mode considered. 
Putting 9 

a In q: - iOH + ~rp b~(~, P) (3.10) 
q: T iqll- ofl 

with c~jF = ql]q, we obtain the total surface absorption of the mode (or, %) 
from (~5) 

where 

:~(~.) = b~ +)(~.) + b~-%,)  

b~ +- )(r = bo( ~t( +_ d/2, %), fl/_+ 1) 

(3.11) 

(3.22) 

8 The integer n is large for the modes considered here, typically of the order e ~. For small n 
our WKB method is not applicable. 

9 In (3.10), it is understood that the main branch of the logarithm is taken (see Ref. 22). 
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In order to be able to write the nonequilibrium sound modes in a 
compact form, it is convenient to introduce the complex, local wave vectors 

Q~(z, % ) =  (qlL, Q,,~(z, %)) (3.13) 

the z components of which are given by 

Q~:(z, q,) = qz(z, qn) + ith,(Z, %) (3.14) 

where t/~(z, %) is a small correction term of the order e relative to q=(z, %), 
which is defined by 

(7 

r/~(z, %) = 2c(z) O:(z, q.) [-F,.(z) q2(z, q~) - F.(R, %) q2] 

o c(R, q.) ~.~ 
5 c 07, (3.15) 

The real part of q~(z, q,,) consists of a surface term, proportional to 
(I/d) Re ~ ( ~ . ) > 0 ,  and that describes the sound absorption by the two 
plates, and a bulk term. The latter gives rise to a spatial envelope that 
enhances the attenuation length in the direction of decreasing F~(z), and 
diminishes it in the direction of increasing F~(z)/15) This is a pure non- 
equilibrium term. From (3.7)-(3.9) and (3.15) it follows that 

fd/2 Qo:(z, q.) dz = nrc- iac%fft. ) (3.16) 
- d / 2  

After these definitions we are now in a position to present the eigen- 
modes. Up to first order in e the eigenvalues read (is) 

1 
Q~(Rz, %) s,~,q,,.=i~rc(R~) Q~(Rz, q.)+~ F,(Rz) 2 (3.17) 

We remark that the complex wave vectors have been constructed in such a 
way that the eigenvalues do not depend on the reference point (up to first 
order in e), as it should be. From the three zeroth-order eigenfunctions we 
give here only the pressure eigenfttnctions, because only they enter directly 
in the expressions (2.14)-(2.17) for the oscillator strengths. The pressure 
eigenfunctions are 

1 F cfR, qol  1j2 
p~.qlln(z) 

2~ x/d Lc(z) 4:(z, q~)J 

x cos [ f: d/2 Q~z(z', qn) dz' + iab~- )( qn) (3.18) 
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The other eigenfunctions S,~,qjl,,(z ) and ~,qj~(z) are only needed in the com- 
putation of the mode-coupling matrix [cf. Eq. (2.18)], so that we can 
postpone them to Appendix B. 

4. O S C I L L A T O R  S T R E N G H T S  

The nonequilibrium sound modes presented in the last section can 
now be inserted into the formal mode expansion of the Brillouin lines, 
Eqs. (2.13)-(2.18). In doing so, it is convenient to identify the reference 
point R with the center of the scattering volume. The remaining problem is 
then the summation of all the modes. Making use of the small parameter e, 
we can carry out all the sums analytically. In this section, we sketch the 
first step: the evaluation of the oscillator strengths B~ LE and B,, Mc defined in 
(2.15) and (2.16), respectively. 

First we need the Fourier transforms, defined in (2.17), of the pressure 
eigenfunctions (3.18). Recalling from Section 2 that L, is intermediate 
between the wavelength and the macroscopic lengths, one finds that 
/~.~j~,(k:), considered as a function of q~, is concentrated upon a peak of 
height ~ L ,  and width ~L~7~ around q,,~,~ ]k:]. Neglecting terms of the 
order ~ ,  we obtain 

l [c(R,k)] 1/2 
P~'k'J"(k=) = 2~ x / ~ t ~ J  [exp(-ik,R__)] xo(q .... k:) 

x exp t i~T[  ~/2Q~(z,q,,)dz+iab},-I(r ) (4.1) 

where 

~ ( q  .... k~) = ~ - -  dz exp i 1 d in  c kz21 (q,,:+iFl~-[k~f)z-~ dR~ 

(4.2) 

and we have put q,, = (k,, q,,~) and F/~ = ~/~(R~, k). Inserting (4.1) and (4.2) 
into (2.15), we find for the local equilibrium oscillator strengths, after some 
straightforward manipulations summarized in Appendix A, 

L E  . _ - _ _  B,,~ (k, R~) p(Rz) T(R.) Tcc(R, k) 
2c2(Rz) dc(R~) A~(q,,+igl~-tkc[) (4.3) 

where 
1 sin2(qLs/2) 

Al(q)=~ q2Ls/2 (4.4) 
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In computing the mode-coupling part of the oscillator strengths, given 
by (2.16), we again make use of the fact that the functions/~,kH,(k~) and 
/~ ~,~l~(-k~) are peaked around q~z ~ Ik~[ and q ~  ~ lk~], respectively. For  
this reason we need to take into account in the sum only those terms where 
qmz lies within a distance of the order L s ~ of q,~. In other words, we have 
to take into account only modes with values m close to n, i.e., 
]m-ni/n ~< O(x/-~). Putting thus qm = (kll, qm~) and expanding around q~, 
we obtain from (3.5)-(3.8) for the modes in question 

where 

qz( z, qm) -~- q~(z, qn) "~ (m - n) 
rc c(R, k) Ik~l 
cl c(z) IO (z, k)l 

[_ + 

(4.5) 

(4.6) 

In the second term on the right-hand side of (4.5), we have neglected terms 
of the order ~ in replacing qn~ by f_-I. Similar to (4.5), we can evaluate 
H . . . . . .  (kll),/~ ~,k~l,~(-/~:), and s o,~Hm for values m close to n. In this way, 
we obtain the leading approximations to all the quantities we have to sum 
in (2.16). These results will be given next. 

For  the matrix elements of the mode-coupling matrix we find 

i~r 
H~,, _~m(kll)= ( 2 ~ c ( R ,  k ) f = l  

X "1-(1/2 d z  sin [(m - -  r t )  7CZI(Z  ) - -  i O ' ) ~ 2 ( Z ) ]  (4.7) 

where we have introduced the auxiliary functions 

Z'(z)= Zl(Z' k)=c(R'  k) lf%l ~l - 2 c(z') lq:(~ z', k)l 

and 

(4.8) 

Zz(Z)=,(2(z, k)= f:j/2 F~(z') q2(z', k ) -  Fs(R, k) k2 ~ dZ'z, 
_ c ( z ' )  I q : (  , k)l 

- 2 Z l ( z )  w~+t(~)+ 2[1 - Zl(z)] w~-I(~) (4.9) 

In (4.9), we have used the total absorption coefficients wI+)(l~) and w / i(~) 
of the walls at z = +d/2 and z = -(t/2, respectively. They are defined by 

w(_+ ,(~t = 1 [b(• + b/+/(~)] (4.10) 
" " 2 

More details on the derivation of (4.7)-(4.10) are given in Appendix B. 
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From (3.11), (3.14), (3.15), (4.1), and (4.5) we find, furthermore, 

1 c(R, k) 
- - -  rG(q~, k~) n ,~(qmz, - k~ )  

(2n) 2 d c(R=) 

k_ 
x exp - i 77@ [(m - n) 7zzl(R=) - iaz2(R=)] 

Itc~l 
(4.11) 

and, using (3.ll),  (3.13)-(3.15), (3.17), and (4.5), we obtain 

G,<,,,+s ,,<,m = -- ia-~c(R,k)I /~l  ( m - n ) + i a  ~(k) (4.12) 

where 

~ ( k ) = F , ( R , k ) k  2 d ~_w(+)(~)+wi_)(~) (4.13) 
2c(R, k) I/~:[ 

With the aid of the expressions (4.7), (4.11), and (4.12), one can now 
compute the sum over m in (2.16) in closed form. This calculation is out- 
lined in Appendix C. The result is 

MC &o (k, R:)= P(&) ~c(R, k) 
2c~(&.) de(R:) 

r d/2 d T  
• A~C(qn= + ills-- Ik:l; k) J/ d/2~z G~(z; R, k) (4.14) 

In (4.14), the quantity 

MC 2 n A~ (q,,: + ion-Ik=l; k) = -  o(q~, k~) n-~(q'nz, -k~)  
7r 

(4.15) 

with 

2 e(R, k) 
q;,==q'n=(k)=qn~-ia-, ~(k) (4.16) 

a C( Rz ) 

will be seen in the next section to give rise to deviations of the line shapes 
from the Lorentzian form. Thus, we will call A~ ac the line-shape factor. 
Furthermore, the dimensionless function G~(z; R, k) appearing under the 
integral in (4.14) will be called the propagator. It plays a central role in our 
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theory, since it measures the range over which the temperature gradient is 
"felt." The propagator is explicitly given by 

Go(z; R, k ) =  

exp 2a(k=/tk~l ) {( + )( R:, k) 

sinh 2~(k) 
sinh 2~ ~ >(z, k) 

exp - 2a(kjlk= 1) {I-)(R=, k) sinh 2{ / +/(z,k) 
sinh 2{(k) 

(4.17) 

where 

f • , 2 C(z  ) q (z, k) 
{l• k ) =  _+ 2c(z') [q=( , k)[ z' dz'+w~• (4.18) 

is the total sound attenuation between the point r on the ray (R, k) and the 
plate located at +d/2. It consists of a fluid term and a wall term. Notice 
from (3.9), (4.13), and (4.18) that 

~t+/(z, k ) +  ~ )(z, k ) =  ~(k) (4.19) 

for all z. 
The last step in the evaluation of the mode-coupling oscillator 

strengths consists in computing the line-shape factor AM c defined in (4.15) 
and (4.16). This calculation is summarized in Appendix D, with the result 

C(G) 1<2 
d2C(q, k ) =  A , ( q ) - a  2c(R~) I/~=l 

x[i0A_!(_q) 1 dlnc  kL20A2(q)] (4.20) 
k aq 6~=~R= Oq J 

where A,(q) has been defined in (4.4) and 

3 sin2(qLs/2)- (qLj2) 2 
d2(q) = -- 2~ q4(Ls/2)3 (4.21) 

To close this section, we note that the total sound attenuations 
~(-+)(z, k) always appear with a factor 2 in (4.17). This is due to mode- 
coupling: one term can be traced back to the "host" mode (a, qn) in (2.16), 
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while the contributions of all the coupled modes ( - a , q , , )  in the sum 
(2.16) add up to the same result. Mode coupling is also the origin of the 
second term on the right-hand side of (4.20), which will be found to cause 
non-Lorentzian line shapes. 

5. RESULTS A N D  D I S C U S S I O N  

Knowing the eigenvalues (3.17) and the oscillator strengths (4.3) and 
(4.14), one can return to (2.13) and evaluate, finally, the Brillouin lines in 
the stationary state. This step of the calculation is outlined in Appendix E. 
Here, we will present immediately our final results and conclude this paper 
by some remarks concerning their physical interpretation. 

For the local equilibrium part of the Brillouin lines, we obtain 

L E  SBo(k, 6o; R: )=  IB(Rz) Re Y~(k, co; R~) (5.1) 

where 

] f o9 L E  I~3(R)=-2-~ Sr3,~(k, co;R.)dco=kBT(R~ ) p(R~) 
~ _ ~ ~" 2 c 2 ( R ~ )  

(5.2) 

is the local equilibrium part of the integrated intensity of each line, while 

2 
YB~(k, co; Rz) = --i[co - ~rc(Rz) k] + �89 k 2 (5.3) 

describes the line shape. The local equilibrium intensity IB(R~) does not 
depend on k and is the same for both lines (a=  +and a =  - ) ;  the local 
equilibrium line shapes are Lorentzian. By Eqs. (5.1)(5.3), we have 
verified that our nonequilibrium sound modes lead to the expected answer 
for the local equilibrium part of the dynamic structure factor (Ref. 18, 
p. 243). We need not discuss the local equilibrium results further. 

The main results of this paper are our expressions for the mode- 
coupling, i.e., the typical nonequilibrium contributions to the Brillouin 
lines. They are the following: 

S~C(k, co; Rz) = Re[I~C(k; R=). Y~C(k, co; R:)] (5.4) 

In (5.4) the mode-coupling intensities read 

I~C(k; Rz) = IB(R ) ~ ca/2 dT | -~  G~(z; R, k) z T(R=) J-a/2 az (5.,5) 
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with G~(z; R, k) the propagator on the ray (R, k) as defined in (4.17) and 
(4.18). Furthermore, the line shapes in (5.4) are given by 

where 

YMC(k, C0; R~)= [ 1 -  f2(k; R ~ ) ~ ]  YB~(k, co; R~) (5.6) 

1 ( l d l n c  ) 
f2 (k;R:)=~rs(Rz)k  2 i 61~ -~-~ kL2s (5.7) 

The expressions (5.4)-(5.7) are new. They take into account 
simultaneously both the boundary effects (partially or totally sound-absor- 
bing walls) and the nonlinear effects (spatial inhomogeneities induced by 
the temperature gradient). The mode-coupling intensity I~C(k; Rz) given 
by (5.5) is proportional to the temperature difference between the lower 
and the upper plate, weighted by the propagator Gr R, k) on the par- 
ticular ray (R, k) that is selected by the scattering geometry. 

We conclude this paper with a few remarks on the expressions 
(5.4)-(5.7). A more detailed discussion, involving the relationship of the 
present theory with those of Satten and Ronis (~~ and that of Kirkpatrick 
el a[., (14) as well as new experimental checks of the theory, will be reserved 
for another paper. (~v) 

1. The linear theory for infinite systems ~4 9) is, of course, contained in 
our theory as the simplest special case. In fact, neglecting the spatial 
inhomogeneities in putting c(z)= c(Rz) and F,(z)= Fs(Rz) and taking the 
limit d ~  0% one obtains from (4.6), (4.13), and (4.17)-(4.19) for the 
propagators 

r , ( R z )  k 2 1 
x exp - 2 a  (R~ - z) (5.8) 2c(&) s 

where O(z) is the Heaviside step function. Inserting this into (5.5) with 
dT/dz = dT/dRz, d ~ oo, yields 

a dT 1~ z c(Rz) 
IMC(k; R~) = -I~(Rz) r(Rz) dR~ F~.(Rz) k 2 (5.9) 

which is the well-known linear result. Equation (5.9) implies that the scat- 
tering intensity is higher (lower) for the Brillouin line that probes the 
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sound wave coming from the warmer (cooler) side of the system by an 
amount proportional to the temperature difference "felt" by the (straight) 
sound ray (R, k) along half 1~ a mean free path (24) 

Imfp(k) ~- 2c( R y F s (  R~) k 2 

The linear attenuation length /mfp(k) enters in the exponent of our 
propagator (5.8). 

2. The modifications caused by boundaries and nonlinearities can be 
seen most immediately in the case of totally absorbing walls, i.e., 
f l ( + t = f l ( - ) =  1, and vertical scattering, i.e., [/~f = 1. Here one finds from 
(3.10), (3.12), (4.6), (4.10), (4.13), and (4.17)-(4.19) 

G~(z; R, k ) = - a ~ O ( c r ~ ( R : - z ) )  

fR= rs(z2q2! ', k)d ' (5.1o) 
xexp -2o- ]k~[ j: 2c(z ) rc):(z', k)t 

This is the generalization of (5.8) to the nonlinear regime, the linear 
attenuation in the exponent being replaced by the corresponding quantity 
along the curved sound ray (R, k). Inserting (5.10) into (5.5), one finds 

1 r ~(~-/rk:l)d/e d T  
I d z - -  IMC(k; R;) = I . (  R:)  T -~: )  ~ R: - 

dz 

k_ R: x exp _2o_ ~__ ( ] E , ( z ' ) q 2 ( z ' , k )  dz' (5.11) 
]k~l ~- 2c(z') Iq;(z', k)l 

As a result of the spatial inhomogeneities, the attenuation length for the 
sound propagating in the direction of increasing (decreasing) Fs(z ) is 
smaller (larger) than the value/mrp(k) predicted by the linear theory. This 
purely nonlinear effect can be probed in measuring the sum (IBM+ c + I~C) of 
the mode-coupling intensities. (/71 If fl-r 1, one must use the more com- 
plicated expressions (4.17) and (4.18) for the propagators, which take into 
account the reflection of sound at the walls. 

3. The shape of the mode-coupling contribution to the Brillouin 
lines, given by (5.6), consists of a Lorentzian and a non-Lorentzian part, 
which is proportional to the derivative of a Lorentzian. The strength of this 
non-Lorenzian part is determined by the factor s R~), defined in (5.7). 
This factor consists of two terms. The first term on the right-hand side of 

1o The factor 1/2 is due to mode coupling (cf. the comment  at the end of the last section). 
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(5.7) describes a narrowing of the lines and has already been obtained in 
the linear theories. (4 9) The second term only arises in a nonlinear theory 
and accounts for a shift in the location of the peaks due to the variation of 
the sound velocity within the scattering volume. The precise amount of this 
shift depends very much on the spatial distribution of the intensity of the 
incoming laser beam. In this paper, we have made the simplest possible 
choice in assuming a step function with width L,. Probably a Gaussian dis- 
tribution, as used in Ref. 10, would have been more realistic. However, 
since with present techniques the line shapes are almost impossible to 
measure, it was not our aim to present here quantitative results on the line 
shift, but merely to give the qualitative trend of the effect. Thus, we obtain 
from (5.6) and (5.7) to first order in the dimensionless parameter 
[(dln c)/dR=] kL~ that the maxima of the lines are located at 

c%(k)=ac(R~)k 1 2 d l n c  2 - - - =  G k  ~ kL, (5.12) 
48k~ 

i.e., the sign of the shift is given by the sign of (dc/dR=) k=. Moreover, the 
lines are no longer symmetrical about their maxima. 

A P P E N D I X  A 

In this Appendix, we derive the expressions (4.3) and (4.4) for the 
local equilibrium oscillator strengths. Inserting (4.1) and (4.2) into (2.15) 
yields 

LE k" _ p(R=) T(R:) 1 c(R, k) 
B.~ ( , R=) - c2(R=) d c(R:) 

1 ~  Ls/2 ~ Ls/2 
x - -  dzl dz2 

4L,. - Ls/2 o L,/2 

x exp i I(q,,~ + iqr - Ik=l )(zl + z2) 

1 dlnCk(z2 z~) ] (A.I) 
2fez dR~ 

Introducing the new integration variables ~=(1/2L~.)(Zl+Z2) and 
z = z  1 - z 2 ,  one can easily integrate with respect to z, and one finds after a 
short calculation 

p(R~) T(R:) c(R, k) 
L E  . B ~  (k, R:) = 

2c2(R:) dc(R~) 

f~/2 s i n 2 ( q , ~ + i O o _ l k = l ) L s ~ f ( l  d lnc  2 ) 
x d~ q , , z + ~ [ - - ~  b I~:1 dR= kLs'~ (A.2) 
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where 

f (a,  ~)= 
d sin a~(2~ - 1 ) 
d~ a~ (A.3) 

Since 

1 d l n c  
a = kL~ 

Is dR: 

is at most of the order 1, one has to a very good approximation H 

f (a,  ~) ,~ 2 (A.4) 

in the whole interval 0 ~< ff ~< 1/2. Using (A.4) in (A.2) and integrating, one 
finds the results (4.3), (4.4). 

A P P E N D I X  B 

In this Appendix, we derive the results (4.7)-(4.10) for the elements 
Ho,,,_am(klr ) of the mode-coupling matrix. According to the definition 
(2.18), not only are the pressure eigenfunctions po,qH~(z) given in (3.18) 
required in the calculation, but so are the eigenfunctions So,q~jn(z) and 
~bo,qLtn(z), corresponding to the entropy density and the potential of the 
longitudinal velocity, respectively. They are found in Ref. 15 to read 

1 - - ~  7(z)= 1 c(R'q")@~z]I/2B(2)(z) (B.1) 
S~,q,r,,(z) = 27c, /5  h v(z) c(z) OXz, q.)3 a , q n "  ,' 

i _ a  [_c(R, %) O,z ],/2 
O~r'qiln(Z) : 2~ R e )  Oz(Z, q,,)J qll( Z, qn) 

{ I f  z ] x cos Q~z(z', %) dz' + iab(~ )(?I~) - B(1) (zl o- ,qn ', I 
d/2 

- i a  [7(z)-- 1] Dr(z)  q(z, %) B(2) ( z ~  
c(z) , .~  , j  (B.2) 

n(~/ z ~z) z boundary layer functions, defined by Here, ,_,o,qo( ) and B~,q,( ) are 

B(~) z = 1VE(+)tfi ]aql!(z-d/2)-4-F(-)tfi ]o -qll(z+d/z) ~,q~ ) ( -  , . . . . .  ~ _ _ ~  , . , , ,~  ( B . 3 )  

1~ For example, for a = 3 the error is below 5%. 

8 2 2 / 4 6 / 1 - 2 - 2 2  
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and 

B(~2)q"(z)=(-1)'E(+)(~ljexp{e-'~/4[c(d/2)q(d/2'q'!]'n(z-d)}" L DT(d/2) J 

(B.4) 

where 

(h( + d/2, qn) t% +)(~.) = (u.5) 
[ l - fl( +- )2 + 2iota( +_ )011( -- d/2, q . ) ]  1/2 

The boundary layer functions decay exponentially to zero as z is moved 
away from the walls into the bulk fluid. In fact, Eqs. (B.3) and (B.4) imply 
that the thickness of the boundary layer corresponding to B~l~n is of the 
order l/q,,, while that of B 12) is even only of the order el/2/q,. The o-,qn 
amplitudes E~+)(~,) depend on the acoustic admittances fl(_+) of the plates. 

Now we are able to discuss the integral (2.18). Recalling that we need 
only modes with q , : ~  Ik=l and q , , :~  Ik:t, we find from (3.18), (B.1), and 
(B.2) to leading order in e for the terms appearing in the integrand of 
(2.18) 

po.~,,~(z)+ ~ (7 _--~) '/~ s~.~,,~(~) 

_ 1 [ c(R, k)I/~:[ ],/2 

and 

dz 

B (2) (z]'~ 
~ ~ / ]  

(B.6) 

2~ ,,/-~Le(z)14z(z, k)lJ ~, 14z(z, k)l 

] x sin Q_o~(z',qm)dz'-iob~-)(~) 
-d/2 

d8%..o(z1 1 ~ } (B.7) 
+ Iqz(z, k)------~ 
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with q, = (ktl, q,z), q,~ = (kN, qm-,)" In (B.7), we have used (3.14). Further- 
more, we have neglected in (B.7) the term containing the derivative of the 
boundary layer function B(2_)~,q,,,(z). This is justified, although dB(2)/dz is 

large (i.e., of the order k/x/-~), because it is multiplied by a factor of the 
order e. Indeed, the function B(~2~, in (B.2) becomes relevant only when 
second- or higher order derivatives of (b,~,qij,,(z) with respect to z are con- 
sidered. 

When (B.6) and (B.7) are inserted into (2.18), one obtains three types 
of integrals, which can be estimated as follows: 

-d /2  

' 

X,j d/2 ]q~(z, k)[ ~ = 
(B.8) 

= ~O(k - l f )  if f exponentially decaying 

(O(fd)  i f f  oscillating 

Here f ( z )  stands for a function that decays exponentially or oscillates on 
the scale k -1, i.e., d ln f / d z=O(k ) .  From (B.8) we conclude that the 
leading contributions to (2.18) come from the last type of integral, where 
f ( z )  is an oscillating function. Such integrals become relatively large 
because the product of two functions, both oscillating on the scale k - l ,  
contains a term that varies on the macroscopic scale ~> k l, as follows from 
trigonometric addition theorems. The terms involving the boundary layer 
function B (1) are seen to be smaller than the leading terms by a factor of 

~,qn 

the order e; those containing B (21 are even smaller by a factor e 3/2. This 
- - ~ , q n  

implies, in particular, that the entropy density eigenfunctions, given in 
(B.1), are negligible for the Brillouin lines. 

Inserting now (B.6) and (B.7) into (2.18), thereby neglecting the boun- 
dary layer functions as argued above, we obtain with the aid of 
trigonometric addition theorems 

_ _ i ~  c(R, k)I,~=1 ~d/2 dz--dT 
H~"-~m(kll)- (27r) 2 d .' a/2 dz 

{/ x sin [Q_,~z(z', qm)-- Q~z(z', %)] dz'.~ . 
--d/2 

- iaEb{ o)(~) + b(~-)(~)]; (B.9) 
J 
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From (B.9) is is straightforward to derive Eqs. (4.7)-(4.10), using (3.11), 
(3.14), (3.15), and (4.5). 

A P P E N D I X  C 

In this Appendix, we derive Eqs. (4.14)-(4.18). To this purpose, we 
insert (4.7), (4.11), and (4.12)into (2.16). This yields 

ME . m B,,o (k, R . ) =  p(R~) 7zc(R, k) 
c2(R:) dc(R:) rco(q,~, k:) 

1 fa/2 dT 
x ~ ~-a/2 dz--&z ~ rC-a(qmz' -kz)  Gma(Z; R, k) 

where 

1 exp -i(kjIk=l )E(m - n) ~zz~(Rz) - itTz2(Rz)] 
Gm~(Z; R, k ) -  

~z (m - n) + ia(2@) ~(k) 

x sin[(m - n) g~(I (Z)  - -  itrZe(Z)] 

(c.1) 

(C.2) 

In order to perform the sum in (C.1), we first expand ~z_o(q .... - k : )  
around q,,.. Using (4.5), this yields ~2 

1 k (m-n)  rcc(R,k)]'O'l 
.... - k : ) =  ~ ~ de(R_) ] ~q, "a_o(q .... 7"C_G( q ~ k z ~ (C.3) 

/ = 0  ~ 

Differentiating (C.2) formally with respect to z~(Rz), one obtains on the 
other hand 

OzI(R:)~Gmo(z;R,k)=-'l~-f:](m-n)~ Gm,(z;R,k) (C.4) 

Combining (C.3) and (C.4) gives 

2 rC ,T(qm:, -kz) Gm.(Z; R, k) 
m 

~ ilk. I d--c-c-c(Rm_)J 
0 r 

x 8)~1(R~)' G,,(z; R, k) (C.5) 

~2All orders in (q .... qn:) have to be kept, since r c _ o ( q m . , - k . )  is sharply peaked, thus 
depending sensitively on q.,:. 
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where 
G,,(z; R, k) = ~ Gma(Z; R, k) (C.6) 

m 

Already using here a result from (C.13) below, we can write 

8)~I(R~)zG~(z;R,k)=-a-~12~(k ) G~(z;G,k)  (C.7) 

which allows us to sum the right-hand side in (C.5), yielding 

7r ~(qm-,, -kz)  Gm,(Z; R, k) = ~-~,(q;,z, -k : )  G~(z; R, k) (C.8) 
m 

where q',z is defined in (4.16). Inserting (C.8) into (C.1), we obtain 
Eqs. (4.14) and (4.15), and it remains to be shown that the sum (C.6) is 
given by (4.17) and (4.18). To do this, we can restrict ourselves to real 
admittances fl(-+)>~0, since the general case follows by analytic con- 
tinuation. According to (3.10), (3.12), and (4.10), real admittances imply 
that the wall absorptions w (-+)(~) have real, nonnegative values. Hence, by 
(4.9) and (4.13), Z2(z) and ~(k) are real functions. Inserting, after these 
considerations, (C.2) into (C.6) and replacing the summation index m by 
(m-n),  we can write 13 

G~(z; R, k ) =  1 f - ~  lexp [ - a  ~ z2(Rz)]} 

(Tz sinh Xz(z) {exp [crz2(z)] } G' (z+) 

+ {exp[-aZ2{z)]  } G'(Z_)i (C.9) 
/ 

where 

k ~  

Z+ =Z_+(z, Rz)=  -ik"lz gZl(Rz) ~IrZl(z) (C.lO) 

and 

1 os eiZm 
G'(Z ) v ,  (C.1l) 

= 2/" mL'__ L m + io-(2/rc) ~(k) 
c.c, 

13 We use here that the terms (C.2) are peaked around m..~ n, which allows us to extend tile 
sum (C.6) also over negative m values. The error in doing so is of order e. 
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The value of the sum in (C.11) is (23) 

7r exp {~r(2/~r) ~ (k ) [ ; / -  2zd] } 
G'(Z) = (r 4~(k) + r e - -  1 - exp[4cr~(k)] (C.12) 

where l is an integer to be chosen such that 0 < X - 2 ~ l <  2re. If X = 2~r], l 
integer, the sum (C.11) does not converge. However, this case does not 
arise here, since Zl(Z) in (C.10) is by the definition (4.8) a monotonically 
increasing function of z with values between 0 and 1. Using (C.10) and 
(C.12) in (C.9) yields after a short calculation 

Go-(z; R, k) 

exp -rr(kz / Ik~l){2~(k)[z l (R~)  - O(R~ -- z)] + Z2(Rz)} 

sinh 2~(k) 

x sinh{2~(k)D~(z) - O(z - R~)] + ;~2(z) } (C.13) 

This confirms the result (C.7) we have used above. 
From (C.13) it is now easy to find (4.17), (4.18). One merely needs to 

use (4.19) and the identity 

2~(k) X~(z)+ ;(a(z)= 2~ (- ~(z, k) (C.14) 

which follows from the definitions (4.8), (4.9), (4.13), and (4.18). 

A P P E N D I X  D 

In this Appendix, we outline the derivation of the results (4.20) and 
(4.21) for the line-shape factor. First we insert (4.2), (4.14), and (4.16) into 
the definition (4.15). This yields a double integral of a form similar to, but 
slightly more complicated, than Eq. (A.1) in Appendix A. In a manner 
similar to the calculation there, one substitutes the center-of-mass and 
relative coordinates as new integration variables. Then the integration over 
the relative coordinate ~ can be executed straightforwardly. Using also 
(3.11), (3.15), and (4.10), one is left with 

dMC(q,,~ + iflo - -  [kz[; k) 

Ls ~ 1/2 
= - ~ _ 1 2 d ~ F ( ~ ) e x p 2 i ( q n ~ + i q , ~ - l k z l ) L s ~  (D.I) 

where 
e 2~; s in{  [ a ~ ( k . / f k z [ )  - i&](1 - 2 j~})}  

F(~) ~- (D.2) 



Brillouin Lines in Fluid Under Stationary Heat Flux 345 

and 

1 d l n c  2 
a - - -  kL= (D.3) Ik=l dR: 

F=(R~) k 2 
~=0" L= (D.4) 

2c(R~) Ik:l 

Since 6 is a small quantity of the order x/-f, we expand in (D.2) up to first 
order in 6: 

(D.5) 

Inserting (D.5) into (D.1) yields after some calculation and a partial 
integration 

AMC(q,,: + i0o-- [k:t; k) 

6 
= l f s  

k: 6 a } s i n 2 ( q , : + i O o - l k z l ) L = f  (D.6) 
t tk:12L g(a, f) O-~-~= q,,z + iO - Ikz[ 

where 

~3 sin a f ( 2 f -  1) 
f (a ,  f) = Of af (D.7a) 

c~ 1 ~3 sin a~(2ff - 1) 
g(a, f) = 0f f2 ~?a af (D.7b) 

Approximating (D.7) by the leading terms in the Taylor series with respect 
to a leads with sufficient accuracy in the whole interval 0 ~< f ~< 1/2 to 

f (a ,  f) ~ 2, g(a, f) ~ -2a(2f  - 1 )2 (D.8) 

since a<~O(1). 14 Using (D.8) in (D.6), one can evaluate the integral and 
find the expression (4.20) with J l(q)  and A2(q) given by (4.4) and (4.21), 
respectively. 

14 See also the remark in footnote 11. 
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A P P E N D I X  E 

In this Appendix, we summarize the final step in the computation of 
the Brillouin lines from the nonequilibrium sound modes. This step consists 
in summing up Eq. (2.13) to obtain the results given in Section 5. Since 
this part of the calculation is basically the same for the local equilibrium 
and the mode-coupling part of the Brillouin lines, we will give the details 
mainly for the local equilibrium part. 

Recalling that L~k=O(1/.~/-c)>> 1, we see from (4.4) that 
A~(q,~ + ifl~ ~ ]k~[) is concentrated at a peak around q,z "~ Ik~l with width 
~ L s  ~. Hence, the main contribution to the sum (2.13), with B,~(k; Rz) 
given by (4.3), comes from the modes n with q~= lying within that peak 
around Ik:l. For these modes one finds from (3.13), (3.14), and (3.17) 

1 2 s~,,,,, = iac(R=) Q~(R=, q~) + ~ Fs(R:) k (E.1) 

with 

Q~(R=, q,) = [k~ + (q,,; + iq~)2] ,/2 (E.2) 

In (E.1) and (E.2), we have replaced q,,: by ]k=[ in the terms that are 
relatively small, which leads to :rrors of the order .,/~. Inserting now (4.4) 
and (E.1) into (2.13) yields 

LE SB~(k, co; R:) = IB(R:) ~zc(R, k) 
de(R=) 

A~(qn= + ifl,~-- Ik=t) 
x~ i [ac (R=)Q~(R: ,q , )_co]+�89  (E.3) 

where we have also used the identity (5.2). 
In (E.3), the distance between adjacent levels q,. and q~+l- is of the 

order 1/d I-cf. Eq. (E.4) below], i.e., smaller by a factor ~ than"the width 
( ~  1/Ls) of the peak. Thus, the q,,. can be considered to lie quasidensely, 
and, since the terms in (E.3) are smoothly varying functions of q,=, we can 
approximate the sum by an integral. Since the density of states is, from 
(4.5), 

7zc(R, k) 
q n + l , ~ - - q n : - - - -  (E.4) dc(R:) 

we obtain from (E.3), using also (E.2), 
LE SB,~(k, ~; R=) 

f f  22 ~(q'~ + i(/r - [1%[) 
= IB(R=) Re dq'= i{ac(Rz)Ek~ + (q'= + ion)2] ~/2 _ ~o} + �89 k 2 

(E.5) 
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In (E.5) we can replace the lower bound of the integral by - ~ ,  since the 
added tail - cc < q': ~< 0 lies far outside the main peak of A 1. Substituting 
then Q': = q'; + ifl~ leads to an integral in the complex plane over a straight 
line ~ shifted parallel to the real axis by the amount Re 0~. Using Re 
fi(-+)~> 0, one can easily show from (3.10)-(3.12), (3.15), and (E.5) that the 
integrand has no pole between cg and the real axis. Hence one can shift the 
path of integration back onto the real axis and obtain 

LE SB~(k, co; R-) 

Is(R:) Re "~ 2A I(Q': - Ik~ I) 
= o ~ dQ': i[a~c(R:)(k~ + Q,2)~/2_ co] + �89 k2 (E.6) 

Finally, we use once more that L k =  O(1/xf~ )>> 1 to approximate the 
sharply peaked function Al(q) by a delta function: 

zl l(q) = O(q) (E.7) 

In fact, the right-hand side in (E.7) is the first term in a multipole expan- 
sion of A l(q), due to the normalization chosen in the definition (4.4). When 
(E.7) is inserted into (E.6) one finds immediately that the integral is equal 
to Ys~(k, co; R,), thus verifying the expressions (5.1)-(5.3). 

For the mode-coupling part the calculation is similar, since also the 
line-shape factor Mc A~ (q,,:+iq~-[k~l;k),  defined in (4.20), is sharply 
peaked around q~:,,~]k~[. The normalization in (4.21) has been chosen 
such that 

A~(q) = 6(q) (E.8) 

inour approximation. Thus, we find from (2.13), (4.14), (4.20), (E.1), (E.7), 
and (E.8) in a similar manner 

S~f(k, co; R:) 

= R e { I ~ C ( k ; R : ) I I + a - c ( R . ;  -=- Q(k; R~) 0@k~z l 

co; R:)} (E.9) • YBo(k, 

where we have also used (5.3), (5.5), and (5.7). Our expression (5.6) is 
obtained from (E.9) by making use of the equation 

YB(k, co; R~)= --ec(R~)[/~l ~ YB(k, co; R~) (E.10) 
01kz[ 

which follows from (5.3), neglecting corrections of order e. 
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